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Abstract—Optimizing routes for multiple autonomous vehicles
in complex traffic situations can lead to improved efficiency in
traffic. Attempting to solve these optimization problems centrally,
i.e. for all vehicles involved, often lead to algorithms that exhibit
the curse of dimensionality: that is, the computation time and
memory needed scale exponentially with the number of vehicles
resulting in infeasible calculations for moderate number of
vehicles. However, using a numerical framework called tensor
decomposition one can calculate and store solutions for these
problems in a more manageable way. In this project, we investi-
gate different tensor decomposition methods and corresponding
algorithms for solving optimal control problems, by evaluating
their accuracy for a known solution. We also formulate complex
traffic situations as optimal control problems and solve them.
We do this by using the best tensor decomposition and carefully
adjusting different cost parameters. From these results it can
be concluded that the Sequential Alternating Least Squares
algorithm used with canonical tensor decomposition performed
the best. By asserting a smooth cost function one can solve certain
scenarios and acquire satisfactory solutions, but it requires
extensive testing to achieve such results, since numerical errors
often can occur as a result of an ill-formed problem.

Sammanfattning—Att optimera färdvägen för flertalet au-
tonoma fordon i komplexa trafiksituationer kan leda till effekti-
vare trafik. Om man försöker lösa dessa optimeringsproblem
centralt, för alla fordon samtidigt, leder det ofta till algorit-
mer som uppvisar The curse of dimensionality, vilket är då
beräkningstiden och minnes-användandet växer exponentiellt
med antalet fordon. Detta gör många problem olösbara för endast
en måttlig mängd fordon. Däremot kan sådana problem hanteras
genom numeriska verktyg så som tensornedbrytning. I det här
projektet undersöker vi olika metoder för tensornedbrytning
och motsvarandes algoritmer för att lösa optimala styrproblem,
genom att jämföra dessa för ett problem med en känd lösning.
Dessutom formulerar vi komplexa trafiksituationer som optimala
styrproblem för att sedan lösa dem. Detta gör vi genom att
använda den bästa tensornedbrytningen och genom att noggrant
anpassa kostnadsparametrar. Från dessa resultat framgår det att
Sequential Alternating Least Squares algoritmen, tillsammans med
kanonisk tensornedbrytning, överträffade de andra algoritmer
som testades. De komplexa trafiksituationerna kan lösas genom
att ansätta släta kostnadsfunktioner, men det kräver omfattande
testning för att uppnå sådana resultat då numeriska fel lätt kan
uppstå som ett resultat av dålig problemformulering.

Index Terms—Autonomous vehicles, HJB equation, Tensor
decomposition, Tensor Train decomposition
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I. INTRODUCTION

A. Motivation

Around 3700 people die in traffic every day [1]. While
there are a number of reasons behind these deaths, one can
not neglect the human factor. Autonomous vehicles have the
potential to reduce the number of deaths, by improved com-
munication between vehicles and more responsible driving.
Another great benefit with autonomous vehicles is that they
free up time for commuters in an ever more urbanised world
[2] [3]. However, in order for these autonomous vehicles to act
safely and efficiently, one needs smart algorithms that calculate
their optimal routes. Consider for example the scenario in Fig.
1.

Fig. 1. Two autonomous vehicles driving on a bilateral road approaches a
roadblock (yellow and black).

Here, two autonomous vehicles are approaching a road
block from each side of a bilateral road, potentially yielding a
conflict between the two vehicles. One approach to this prob-
lem is to let each vehicle try to calculate their path individually.
However, the decision of one vehicle affects the outcome of
the other vehicle and vice versa: this coupling needs to be
taken into account for accurate individual optimisation which
in the general case is a highly non-trivial task [4] [5]. To
avoid this coupling, it could be beneficial to instead solve
the traffic conflict centrally. That is, include all vehicles in
one single control problem and then solve it for all vehicles.
Setting up the problem centrally would then avoid the coupling
problem at the expense of a larger optimisation problem. In
practise, this larger optimisation problem could be solved by
some infrastructure with a greater computation capacity and
the transmitted to the vehicles.

The single control problem can be formulated as an optimal
control problem and solved via a partial differential equation
known as the Hamilton-Jacobi-Bellman (HJB) equation [6].
Unfortunately, as the number of autonomous vehicles grow,
the memory and number of computations required to solve
the HJB equation naively increase exponentially. This phe-
nomenon, generally called the curse of dimensionality, limits
the ability to naively obtain optimal solutions. Finding efficient
ways to approximate these problems is therefore crucial.
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B. Contribution

The focus in this project is to investigate different ways to
solve complex traffic situations as optimal control problems
through numerical approximation and to evaluate different
solvers performance. Common for all methods is that they
use tensor decomposition in order to represent the problems
with less amount of data than the naive form. The tensor de-
composition methods that have been used are canonical tensor
decomposition, tensor train decomposition and quantized ten-
sor train decomposition. These will all be discussed in detail
in sections below. For these decompositions, different solving
algorithms have been analyzed. For the canonical form, a
version of the Sequential Alternating Least Squares (SeALS)
method was used [7], [8], while the algorithms Alternating
Minimal Energy (AMEn) and Density Matrix Renormalization
Group (DMRG) were used for the other two decomposition
methods [9]. It was found that that the methods performed
similarly on small-scale problems, but that SeALS method
scaled best with the number of grid-points in the problem.

The project also found how a scenario with two autonomous
vehicles sharing a road could be formulated as an optimal
control problem. The particular key to formulating the problem
in such a way that the generated simulation was successful
required that the boundary conditions of the HJB equation
had a smooth transition to the rest of the problem.

C. Related work

There has been several other works done with the purpose of
approximating the HJB equation. In [10] the HJB equation is
solved using tensor train decomposition and a policy iteration
algorithm. Noise is however not considered. Other notable
papers that largely influenced this work are [7], [8] which
presents a toolbox for solving a linearised HJB equation using
SeALS.

Apart from using optimal control theory, route planning has
also been approached using game theory, as in [4] and [5].
The problem has also been approached using reinforcement
learning, as in [11].

D. Outline

The remaining report is as follows. Section II introduces
preliminaries, giving an overview of the HJB equation in
section II-A and explaining how a linear version of it can be
found in section II-B. This is followed by section II-C where
the curse of dimensionality and tensor decomposition methods
are explained. Section II-D then describes three algorithms for
solving linear equations that are on tensor decomposed forms.

Section III depicts the evaluation of the different decomposi-
tion and solving algorithms. Section IV describe the procedure
for specifying the dynamics and costs in the problem formu-
lation for road sharing scenarios. Lastly, section V concludes
the project with discussions and directions for future work.

II. PRELIMINARIES

A. The Hamilton-Jacobi-Bellman Equation

1) Dynamics: As mentioned earlier, our approach to the
route planning problem is by modelling the system as an
optimal control problem. In every control system, there is some
state variables that we want to control. These state variables
can for example be the coordinates of an automated vehicle.
The state variables change depending on which state you are
in and what control you apply. This is called the dynamics of
the system and can be written as

dx

dt
= f(t, x, u),

in which x ∈ Ω represents the state. This means x is some state
within the state domain Ω ⊂ Rd. Further on, t represents time
and u represents the control. x and u are most often dependant
on time, but we denote them as simply x and u to reserve the
notation x(t) and u(t) for discussion of trajectories. Generally
we require the control to be admissible, i.e. an allowed control
input u(t) ∈ U for t ∈ [ti, tf ]. U ⊂ Rm is a limited domain
of acceptable control inputs while ti and tf are some start
and end times. In practise this means that u is limited in what
values it can take given a specific point in time. The limitation
on u can in practise be that there is a limit to the amount of
acceleration that can affect the vehicle at a given moment.

2) Cost: In order to find the optimal solution to a control
problem, one needs to specify what is supposed to be optimal.
Therefore, optimization problems are formulated as finding the
maximum or minimum of a function, under some conditions.
Most often this means specifying a cost function, which is
supposed to be minimized. Consider a cost

c(t, x, u).

When speaking of vehicles and driving, this cost function
could be set up to have high values if the vehicle deviates far
from the intended path or if the speed is too high. Minimizing
such a cost could assert that the vehicle follows traffic rules
and expends a reasonable amount of fuel.

There is also often a desire to reach a final state x∗f . To
ensure that the solution reaches x∗f , one can penalize for
deviation from x∗f through the terminal cost φ(xf ). When
the solution reaches a boundary of the control problem, φ is
applied. For example, this could be analogous with driving to
the wrong destination.

3) Finite time HJB: Using the dynamics and cost models
mentioned above, an optimal control problem starting in time
ti and ending at tf can then typically [6] be formulated as

min
u∈U

φ(xf ) +

∫ tf

ti

c(t, x, u) dt,

subject to
dx

dt
= f(t, x, u).

(1)

As mentioned earlier, c(t, x, u) accumulates cost during prop-
agation in time and the terminal cost φ(xf ) penalizes for
deviation from a desired final state.

Finding this u can in the example of the automated vehicle
be that one knows the optimal acceleration and steering at
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any given point, which is what we are trying to accomplish.
This problem formulation is however too complicated to solve
directly, which is why we will need to reformulate it in order
to find an actual solution.

To simplify the problem formulation we define the cost-to-
go function [6] as

J(t, x, u(t)) = φ(xf ) +

∫ tf

t

c(t, x, u) dt, (2)

which is, like in (1), subject to the system’s state dynamics
and an admissible control trajectory. The cost-to-go function
describes the total cost by taking a certain route x→ xf .

Suppose that there is an optimal route by function of
f(t, x, u∗(t)) with the optimal control trajectory u∗(t). The
cost for moving x0 → xf on the optimal route would then be

J(t0, x0, u
∗(t)) = min

u∈U
J(t0, x0, u) , J∗(t0, x0).

with t ∈ [ti, tf ] and x ∈ Ω.

By using dynamic programming and the principle of opti-
mality [6], one can rewrite the optimal control problem as

− ∂J∗

∂t
(t, x) =

min
u∈U

{
c(t, x, u) +

∂J∗

∂x
(t, x)T f(t, x, u)

}
.

(3)

This is called the Hamilton-Jacobi-Bellman (HJB) equation.
Solving the HJB equation gives you the optimal cost-to-go
function J∗. From J∗ you can find the optimal control u∗

which in our case can be used to find the optimal route.
4) First-exit HJB: Currently, (3) presumes that xi, ti and

tf are fixed [6]. However, in some control problems it is more
beneficial to formulate the problem in regards to a set of
fixed terminal states Γ instead of a fixed terminal time tf .
The terminal states could be the boundary of the state domain
Ω, a desired goal region or a combination of the two. In the
situation of an automated vehicle, this could mean that the
problem is set to stop once it reaches the end-destination (a
goal region) or if it drives off the road (a boundary of the state
space).

Suppose there is an optimal cost-to-go function V (t, x) =
J∗(t, x), which we also will call the value function, for a given
optimal control problem. The HJB equation (4) is by definition
solved by the value function

− ∂V

∂t
(t, x) =

min
u∈U

{
c(t, x, u) +

∂V

∂x
(t, x)T f(x, u)

}
.

(4)

Continuing, if the system dynamics, costs and boundary con-
ditions are independent of time then (4) can be simplified to

0 = min
u∈U

{
c(x, u) +

∂V

∂x
(x)T f(x, u)

}
, (5)

with boundary condition V (xf ) = φ(xf ) where xf ∈ Γ.

5) Stochastic noise in HJB: In any practical application,
there exists some kind of noise. In order to achieve accurate
results it is useful to include this noise in the model of the
system. This can be done by formulating the dynamics as

dx = f(x, u)dt+B(x)dw, (6)

where B : Rd → Rd×p is a noise function and w ∈ Rp is
Gaussian noise with noise covariance matrix Σε. The function
B governs how the dynamics is affected by the noise w.

Using these dynamics, the HJB equation for a first exit
problem, see (5), can be derived as

0 = min
u∈U

{
c(x, u) +

∂V

∂x
(x)T f(x, u)+

1

2
Tr(

∂2V

∂x2
(x) ·B(x)ΣεB(x)T )

}
,

(7)

For further details of this derivation, see [12].

At this point, an equation has been derived which solves an
optimal control problem that stops at a terminal state and takes
noise into account. However, it is still complicated to solve in
practise, since it is a non-linear partial differential equation.
In the next section, we will see that the HJB equation can
be made linear under some assumptions, which will make it
much easier to solve.

B. The linear HJB equation

In order to make a linear version of the HJB equation (7), we
will now make three assumptions. More precisely we assume
that the cost c(x, u) can be written as

c(x, u) = q(x) +
1

2
uTRu, (8)

where q : Rd → R is an arbitrary function and R ∈ Rm×m
is positive definite matrix. Here, q(x) is a cost based on the
current state, while 1

2u
TRu penalizes large control inputs. Our

second assumption says that the state dynamics function f can
be separated on the form

f(x, u) = h(x) +G(x)u, (9)

where both h : Rd → Rd and G : Rd → Rd×m are arbitrary
functions. In this case, h(x) is the self dynamics of the system
and G(x) specifies how the control input affects the dynamics.

Using these two assumptions we can now rewrite (7) as

0 = min
u

{
q +

1

2
uTRu + (∇xV )T (h(x) +G(x)u) +

1

2
Tr((∇xxV )B(x)ΣεB(x)T )

}
,

(10)

yielding us the same expression as in [8]. The minimum of
(10) with respect to u can now be found analytically to be

u∗ = −R−1G(x)T (∇xV ), (11)
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which substituted in (10) gives

0 = q(x) + (∇xV )Th(x)−

1

2
(∇xV )TG(x)R−1G(x)T (∇xV ) +

1

2
Tr((∇xxV )B(x)ΣεB(x)T ).

(12)

Observe that (12) has eliminated u, but remains a nonlinear
PDE in V . Our third and final assumption to transform (12)
into a linear PDE is then that there exists a λ > 0 such that

λG(x)R−1G(x)T = B(x)ΣεB(x)T , Σ(x). (13)

Introducing the desirability function Ψ given by

Ψ(x) = e−
1
λV (x), (14)

we can rewrite (12) as

0 = − 1

λ
q(x)Ψ + h(x)T (∇xΨ) +

1

2
Tr((∇xxΨ)Σ)

, A(Ψ),

(15)

which is now a linear PDE in Ψ. This equation can then be
seen as an operator A on Ψ. To sum up, we have the PDE
A(Ψ)(x) = 0 for x ∈ Ω\Γ, with the boundary conditions
Ψ(x) = e−

φ(x)
λ for x ∈ Γ. More compactly put, consider

Ã(Ψ)(x) = G(x) (16)

using a slightly different version of the operator in (15),

Ã(Ψ)(x) =

{
A(Ψ)(x) as in (15), x ∈ Ω\Γ
Ψ(x), x ∈ Γ,

and

G(x) =

{
0, x ∈ Ω\Γ
e−

φ(x)
λ , x ∈ Γ.

The only difference between the operators is that Ã acts as the
identity when on the boundary of the state domain. Solving
(16) for Ψ then gives us the value function from (14) and
lastly the optimal control u from (11), which is the desired
end goal.

This problem is now much easier to solve than the non-
linear one we had earlier. This is because we can discretize
(16) to AF = G, where A and G are discretized versions of
A and G respectively. Lastly, F is the numerical solution to
our problem, a discrete version of Ψ. However, one problem
still remains. In order to discretize the state space naively, one
typically constructs a grid which has grid points in the whole
state space, which is complicated by the fact that the state
space can be high-dimensional. To circumvent this, we will
use tensor decomposition.

C. Tensor decomposition

A commonly used structure within this project is tensors.
A tensor is a multidimensional array and by that a gener-
alization of scalars, vectors and matrices. More formally, a
d-dimensional tensor T is an element in the euclidean space
Rn1×n2×...×nd where T (i1, i2, ..., id) is the element in T at

multi-index (i1, i2, ..., id), where each index is in the range
(n1, n2, ..., nd). To stress the multi-index notation, we also
write Ti1,i2,...,id to denote the full tensor T . Tensors are best
understood in low dimensions. For example, if d = 2 and
n1 = n2 = 3, then Ti1,i2 is a 3 × 3 matrix. If instead d = 3
and n1 = n2 = n3 = 3, then Ti1,i2,i3 is a 3 × 3 × 3 cube.
For higher-dimensions, tensors are harder to interpret visually,
(but most of the intuition from low-dimensional tensors carries
over to higher-dimensional ones).

Due to their structure, tensors are a natural choice for storing
state spaces or operators that represent high dimensions in
a discretized form. Consider two autonomous vehicles, with
state variables x1, y1, x2 and y2. In order to represent each
position these vehicles can have in within a state space, one
would need a 4-dimensional tensor.

There will be different multiplications used within this
project to combine tensors. Often when multiplying in higher-
dimensions, it is the outer product

Ai1,i2,i3 ⊗Bi4,i5,i6 = A(i1, i2, i3)B(i4, i5, i6)

which is used. If · or no multiplication sign is used then it
refers to the inner product

Ai1,i2,i3 ·Bi4,i5,i6 = Ai1,i2,i3Bi4,i5,i6 =∑
i

A(i1, i2, i)B(i, i5, i6),

also known as dot product. If the factors are normal scalars,
then the previous example is a scalar product.

Consider a tensor T ∈ Rn1×n2×...×nd , where we for
simplicity assume that ni = n. Then, the number of elements
in the tensor is nd. In order words, the number of elements in
a tensor scale exponentially with the dimension d prohibiting
a high-dimensional tensor to be stored naively by just saving
all its elements. For example, if n = 100 and d = 12 there
is 1024 elements, which is too much for most computers to
handle. This phenomenon, that the number of elements scale
exponentially with increasing dimensions, is often referred to
as the curse of dimensionality.

To circumvent the curse and by that make the problems
manageable, tensors can be decomposed. The fundamental
principle for decomposition is to approximate the tensor using
less elements while still preserving an accurate representation.
There are multiple formats or representations a tensor can be
decomposed into, some of which will now be described.

1) Canonical decomposition: One of the first and most
prominently used forms of tensor decomposition is called the
canonical tensor decomposition (CANDECOMP/PARAFAC).
The idea is that a tensor T can be expressed as an outer product
of vectors Kip of length np,

T (i1, ..., id) =

K1(i1)K2(i2) . . . Kd−1(id−1)Kd(id)
(17a)

⇔
T = K1 ⊗K2⊗ . . . ⊗Kd−1 ⊗Kd. (17b)

These vectors are called canonical factors and can be seen as
cores to the tensor. The p-th core are, in this paper, written as
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Kp or Kip , for p ∈ {1, 2, ..., d}, in comparison to a element
in the core K(ip).

The canonical decomposition reduces the number of mem-
ory cells needed to store a tensor from nd to nd. Now, instead
of an exponential increase in required memory it is only linear.
Still, decomposing a tensor like this is not always possible,
because the representation will be too inaccurate. To solve this,
one can partition the tensor into sums in which the summands
individually are decomposable,

T = K1
1 ⊗ ...⊗K1

d + ...+K r̂
1 ⊗ ...⊗K r̂

d .

There is naturally an interest in how many terms are needed
to decompose a tensor, this is said by the tensor rank r̂. There
is an incentive to have a low r̂ and since

T =

r̂∑
r=1

d⊗
p=1

Kr
p , (18)

and thus the required memory cells is ndr̂.
There are many different variants of this classic canonical

format. One such is Kruskal’s tensor format [13], [14]. The
idea is that one can factor out a constant λr from each element
in a tensor term. Subsequently doing this for all terms results
in

T =

r̂∑
r

λr T r. (19)

The Kruskal tensor is especially useful when performing
certain operations, e.g. multiplication by scalar constant. Then
the operation can be done on λ, which is only r̂ elements,
instead of every element in the tensor.

2) Tensor train decomposition: The canonical decomposi-
tion is a common method to decompose a tensor into smaller
entities (i.e., vectors), and thereby save memory and computa-
tional time. Another (slightly more complicated) method also
common in the literature is the Tensor Train (TT) decomposi-
tion [10], [15]–[19]. The mathematical expression of a tensor
in TT-format is

T (i1, i2, ..., id) =∑
α0,...,αd

U1(α0, i1, α1) . . . Ud(αd−1, id, αd)
(20a)

⇔
T = U1 · U2 · . . . · Ud−1 · Ud. (20b)

Similar to the canonical decomposition we write either Up,
Uip or Uαp−1,αp

ip
to denote a core, as well as, U(αp−1, ip, αp)

for a specific element in Up. The index order, which will
be important, is [αp−1, ip, αp]. The cores in the TT-format
are notably 3-D tensors, i.e. ”cubes”, in comparison to the
canonical cores which were vectors.

Equation (20b) is very similar to (17b) except for the
difference in product operation. In the TT-format, we use inner
product

Up · Up+1 = U
αp−1,αp
ip

· Uαp,αp+1

ip+1

with respect on the outer left/right indices, which would then
contract the tensor and thus ”connect” the cores via the index

αp. These α will be refered to as summation indices. The
summation indices comparably replaces the tensor summations
in the canonical decomposition. Consequently, the sum in
(20a) would be roughly comparable to the sum in (18).
Because of this structure there exists multiple ranks for a
TT tensor, and they are given by the sizes of the summation
indices. Consider the following core’s dimension

dim U
αp−1,αp
ip

= [rp−1 × np × rp].

The rank of Up is given by rp, and similarly, there exists
a rank for all other cores. Still, one could easily establish a
bound rp < r̂, for p ∈ {1, ..., d}, to the TT tensor [15].

The structure of a TT tensor is best explained by introducing
a graphical notation used by e.g. the quantum chemistry com-
munity for modern physics [19]–[21]. The notation focuses on
graphically showing ”connecting indices” and can simply be
explained as follows.

To connect indices is to perform an inner product of two
tensors. The example of an inner product between a matrix M
and a vector v (2-D tensor and 1-D tensor) is shown in Fig. 2.
The nodes in these diagrams are tensors of dimension equal to
the number of outgoing edges. The M node has two outgoing
edges and is thus a 2-D tensor (matrix). The product Mi,j vj
becomes a vector and as can be seen in the figure, there is
only one ”loose” edge. The canonical representation is rather
trivial. A tensor of rank 2 can be seen in Fig. 3. The cores
are not connected through inner product but by outer product,
therefore they are as one single node.

j
Mi,j vj = Mi v

Fig. 2. Dot product of a matrix and a vector

K1
1

i1

K1
2

i2

K1
d

id

· · · K2
1

i1

K2
2

i2

K2
d

id

· · ·

T 1 T 2

+

Fig. 3. The tensor network diagram for the canonical format.

α1 α2 α3 αd−1

U1

i1

U2

i2

U3

i3

. . . Ud

id

T

Fig. 4. The tensor network diagram for the TT format.

In the graphical notation for TT decomposition, the cores
of a TT tensor are connected through the summation indices
in a train-like manner (thereof the name), as shown in Fig. 4.
Notably, the indices α0 and αd are not present in Fig. 4 yet
included in (20). This highlights a ”boundary condition” on
the structure of the TT-format.
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α1 α2 α3 αd−1

U1

i1

U2

i2

U3

i3

. . . Ud

id

α0 αd

Fig. 5. Tensor in TT-format with non-trivial outer summation indices leaving
the ”train” with open ends.

The size of a tensor core is rp−1 × np × rp. For the inner
cores, indices connect like in the example of U3 and U4,

dim U3 · U4 =

[r2 × n3 × r3] [r3 × n4 × r4] = [r2 × n3 × n4 × r4].

But the outer cores, U1 and Ud, must have their summation
indices restricted to r0 = rd = 1. If this ”boundary condition”
would not be, the outer indices would have been non-trivial,

dim Ti1,...,id = [r0 × n1 × n2 × . . .× nd−1 × nd × rd],

thus rendering the train incomplete by leaving the ends open,
see Fig. 5. This is equivalent to the tensor being in wrong
dimensions since the tensor T should only be dependent on
the element indices i and not any summation indices α.

One of the main advantages of using the TT decomposition
is its fast and relatively cheap operations [15], despite it’s
slightly higher memory requirement of dnr2 [19].

3) Quantized-TT: In the creation of the TT format, a
Quantized-TT (QTT) format emerged [19], [22]–[24]. This
new variant seeks to give a tensor structure which can optimize
algorithms, for instance, solving linear systems. The QTT
structure is fundamentally not any different from the TT
structure. What differentiates them is that QTT sets a condition
on its mode sizes. Like the name, the QTT-format is the TT-
format partitioned, i.e. quantized. This quantization is with
respect on the element indices i, so that their mode sizes are
significantly small. Most often the indices are quantized in a
binary state such that i ∈ {1, 2}. However, the QTT-format are
not restricted to only binary quantization (mode sizes n = 2),
but could also be of another similarly small size, e.g. n = 3.
Later on we will explain exactly how this quantization is done.

A problem formulation will most often set a condition on
the resolution, i.e. the discretization grid or mode sizes, for the
intended use-case. The problem may need a high resolution
and thus n is large. In such cases, and if the problem is
formulated in TT-format, it is easy to reshape the tensors into
QTT. A requirement (if we consider binary quantization) is
that the mode sizes must be a power of two, n = 2m. The
reshaping is done by partitioning each existing element index
into m virtual dimensions.

T (ip), p ∈ {1, ..., d} ⇒ Quantize T ⇒

Qip,ṕ , p ∈ {1, ..., d}, ṕ ∈ {1, ...,m},
(21)

The new tensor Q contains more cores than T , but each
individual core in Q has a smaller mode size than a core
in T . Since a QTT tensor is essentially a TT tensor, under
above stated condition, the mathematical expression for the

QTT-format is almost the same as for the TT-format,

Q(i1,1, i1,2, ..., i1,m, i2,1, ..., i2,m, ..., id,m) =

rp,ṕ∑
αp,ṕ

U1(α0, i1,1, α1,1) . . . Ud(αd,m−1, id,m, αd,m)
(22a)

⇔
T = U1,1 · U1,2 · . . . · Ud,m−1 · Ud,m. (22b)

The tensor Q still has equally the same amount of elements
as T, however, the quantization has reshaped the structure
somewhat. The tensor is now of d · m dimensions but only
of mode sizes n = 2,

dim Q =

[n1,1 × ...× n1,m × ...× nd,1 × ...× nd,m] =

[2× ...× 2× ...× 2× ...× 2].

(23)

As an example, consider a TT tensor of size [4× 4× 4]. The
equivalent (binary quantized) QTT tensor would have the size
[(2× 2)× (2× 2)× (2× 2)].

In graphical notation this may be even more clear, see Fig.
6. In the figure, the columns represent full TT-cores Up. Then,
for each TT-core, the virtual sub-cores Up,ṕ are given as rows.
Each QTT-core Up,ṕ will still have two summation indices
through which they connect, one element index through which
the elements are accessed, and the train-network is the same.
Yet, the tensor contains over-all more cores (which individu-
ally are much smaller in size).

α1,1

α1,2

α1,m−1

α1,m

α2,1

α2,2

α2,m−1

α2,m αd−1,m

αd,1

αd,2

αd,m−1

U1,1

U1,2

...

U1,m

U1

i1,{1,...,m}

U2,1

U2,2

...

U2,m

U2

i2,{1,...,m}

. . . Ud,1

Ud,2

...

Ud,m

Ud

id,{1,...,m}

Fig. 6. The tensor network diagram for the TT format.

The QTT format results in a two-folded improvement from
the ordinary TT format. The first one is the lower required
memory of d log2(n)r2 [19]. Secondly, the new format can
utilize fast, efficient and accurate algorithms, by decreasing
how much each element index can vary such that it is minimal
but non-trivial, to solve e.g., linear equations for tensors.

D. Linear system solvers for tensor decomposition

Consider a linear system AF = G, where A,F and G
are tensors. If F and G are of the same size, for exam-
ple Rn1×n2×...×nd . The operator A must be on the form
R(n1×n2×...×nd)×(n1×n2×...×nd), since that means the result
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of AF has the same form as G. Since systems on this form
have many off-the-shelf numerical solvers, the HJB will be
rewritten like this, which is described in II-B.

A trivial example of a linear system is if d = 1, which
means G is a vector and A is a matrix. The unknown solution
F can easily be found as A−1G, if A is non-singular.

However, in the case where A and G are in the form
of decomposed versions of high-dimensional tensors as in
II-C, one must use more sophisticated solver algorithms. The
algorithms are based on the underlying decomposition method.
Following is a brief overview of three algorithms for finding
F .

1) Sequential Alternating Least Squares: In a high-
dimensional linear system, using the canonical decomposition
to represent tensors A,F and G, Sequential Alternating Least
Squares (SeALS) can be used [7], [25]. The algorithm starts
with guessing a solution F in the format of (17). It then fixates
all vector products of F ,

fixate Kr
p , ∀ r ∩ p ∈ {1, ..., d}/p̃,

except for one dimension p̃,

K̃ = Kr
p̃ , ∀ r,

which is used to minimize the solution error,

min
K̃
‖AF −G‖,

using the Frobenius norm ‖·‖. The process iterates through for
all dimensions p̃ = {1, ..., d} until the residual ε = ‖AF −G‖
is satisfactory small.

2) Density Matrix Normalization Group: SeALS is a com-
mon method for the canonical format, but also for TT. This
method is slightly different and utilize the same concept but
for the TT (or MPS)-scheme. It is then called Density Matrix
Normalization Group (DMRG) [9], [26], [27].

The method fixates all but one of the cores, Up for
p ∈ {1, ..., d}/p̃, and minimizes the solution residual with
respect to Up̃. The big difference is the network-like structure
which sets some pre-conditions. For example in the DMRG
algorithm, the cores’ ranks must be fixed and must be guessed
a priori. However, newer versions of this algorithm, like the
Two-site DMRG, has overcome this to let the TT-ranks change
adaptively [9].

3) Alternating Minimal Energy: Another algorithm simi-
lar to SeALS is the Alternating Minimal Energy algorithm
(AMEn) [9]. This method combines the tensor product format
of DMRG and the iterative methods of SeALS to provide an
algorithm that have error convergence similar to that of two-
site DMRG. For further information see [9].

III. SOLVER EVALUATION

A goal within the project was to evaluate the different
solvers and decomposition formats described in II-C and II-D.
A two-dimensional problem called ”Smooth 2D example” was
chosen from [8] as a testing framework. The problem is not
high-dimensional but easy to visually verify. The goal of this

evaluation is only to see which of these solvers seem feasible
to use in the context of solving (4). For the scope of these
tests, two dimensions is enough.

The original problem was first set up in [28]. The goal of
the problem is to reach the origin, following the dynamics[

dx1

dx2

]
=(

2

[
x5

1 − x3
1 − x1 + x1x

4
2

x5
2 − x3

2 − x2 + x2x
4
1

]
+

[
x1 0
0 x2

] [
u1

u2

])
dt

+

[
x1 0
0 x2

] [
dw1

dw2

]
.

(24)

The domain is set up as Ω = {(x1, x2)| − 1 ≤ x1 ≤
1,−1 ≤ x2 ≤ 1}, with control penalty R = 2I and state cost
q(x1, x2) = x2

1 + x2
2. Also, the noise is modelled as Gaussian

white noise, i.e. Σε = I . Finally, the terminal cost is set as
φ(x1, x2) = 5 at the boundary and φ(0, 0) = 0 for the goal
region. The problem is solved, and later used as reference, with
the program from [8] which use canonical decomposition and
the SeALS algorithm. The solution Ψ (desirability function)
looks like a smooth cap, see Fig. 7.

Fig. 7. Desirability function of ”Smooth 2D Example” using CANDECOMP
and SeALS, n = 64

Thereafter we utilized the TT-Toolbox [29] with pre-
implemented solvers dmrg_solve2 and amen_solve2 to
solve the problem. To ensure that the linear system compo-
nents A and G were the same after transforming them to TT-
representation, we let the SeALS program run its course and
created the tensors as canonically decomposed up until the last
step in which the system will be solved with dmrg_solve2
and amen_solve2. We created complimentary MATLAB
functions to make the change in decomposition and finally,
using the TT-format the solvers is used. Fig. 8 and 9 show the
solutions for mode size n = 64.

Fig. 8. Desirability function of ”Smooth 2D Example” using TT and DMRG,
n = 64
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Fig. 9. Desirability function of ”Smooth 2D Example” using TT and AMEn,
n = 64

It is immediately clear that the SeALS algorithm outper-
forms both DMRG and AMEn with tensors in TT-format.
However, according to the documentation of [29] the solvers
work optimally if mode sizes are small, i.e. the tensors are
quantized. Following the discovery of this, we reshaped the
system components to QTT. This time, the results were much
more in line with the reference solution, see Fig. 10 and 11.

The AMEn solver in Fig. 11 were still unusable, despite
being in QTT representation. Not only is the shape rough (not
smooth), but the amplitude is only in the order of 10−3. On
the other hand, DMRG seems to be identical to the reference
solution.

Fig. 10. Desirability function of ”Smooth 2D Example” using QTT and
DMRG, n = 64

Fig. 11. Desirability function of ”Smooth 2D Example” using QTT and
AMEn, n = 64

Since the mode size has an impact on the quality of the
solution, we continued the tests by increasing the mode size
to n = 128. As can be seen in Figures 12 and 13, the DMRG
algorithm show some stochastic noise but otherwise flat and
AMEn seems completely flat except a small spike in the
middle. However, even SeALS in Fig. 14 is not as smooth
when n = 128. Admittedly much better than DMRG and
AMEn, but still showcasing some discontinuity in the quadrant
divisions.

Fig. 12. Desirability function of ”Smooth 2D Example” using QTT and
DMRG, n = 128

Fig. 13. Desirability function of ”Smooth 2D Example” using QTT and
AMEn, n = 128

A mode size of n = 64 results in relatively good resolution,
so it is not necessary with any higher. Thus, for the purpose
of solving the road sharing problem, either SeALS with
CANDECOMP or DMRG with QTT should be used. Since
a full numerical solver is already implemented in [8], using
that program, with the intended SeALS algorithm, would be
best.

IV. THE ROAD SHARING PROBLEM

In this section, we consider route planning problems for
autonomous vehicles. Since it results in high dimensional
structures, we use the methods for tensor decomposition and
equation solving that were described in Section II-C and II-D.
However, in order to apply the algorithms one must formulate
the problem in a proper way. Every parameter needs to be
specified in a correct way, or a solution might not exist. The
different parameters must also weighted against the others to
assert that the solution that is calculated is the desired one. In
this section we present different route planning scenarios and
describe how we formulated the dynamics and costs for them,
ultimately enabling us to solve the example shown in Fig. 1
in section I.

A. Single autonomous vehicle scenario

Consider the traffic scenario in Fig. 15, where one au-
tonomous vehicle approaches a roadblock. We want to for-
mulate this traffic situation as an optimal control problem.
One important part is to specify the dynamics of the problem.
The dynamics specify how the states change depending on
current state and on the control inputs. Using a higher level
of abstraction, the autonomous vehicle in Fig. 15 can be seen
to have two different state variables, that specify the position
in the plane. The control inputs can then be set to directly
impact each state, i.e. setting the velocity directly. The self
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Fig. 14. Desirability function of ”Smooth 2D Example” using CANDE-
COMP and SeALS, n = 128

dynamic can be set to not impact the states. This is equivalent
to the vehicle having zero momentum and stopping as soon
as no control is applied. In mathematical terms this can be
described as [

x1

x2

]
=

[
x
y

]
[
ẋ1

ẋ2

]
=

[
0 0
0 0

] [
x1

x2

]
+

[
1 0
0 1

] [
u1

u2

]
.

(25)

The benefit of this model is that the simplicity makes the
problems easier to solve. The simplicity is not too far from
reality either, since control signals for more realistic models
can be deduced from results acquired with this model, by using
motion planning or the like.

Fig. 15. Traffic scenario with one autonomous vehicle and one roadblock
(yellow and black).

Another important aspect is specifying the cost. The cost
will be a function of the states and regulates how the vehicle
moves, since the solution that regulates the vehicles movement
is based on minimizing the cost. Therefore, the desired end
position needs to have a low cost, while there must be a high
cost for driving too close to other vehicles, roadblocks or the
end of the road. It is also important to use cost functions that
change smoothly across different states for numerical reasons:
If the cost magnitude changes too quickly it can result in
numerical errors and unintended behavior.

Fig. 16. The cost for different states for the autonomous vehicle as a function
of x and y.

One of the measures we took to avoid too big changes in
costs was that we created specialised functions for setting the
costs efficiently. These functions can generate costs that are on
the form of a Gaussian distribution, which changes smoothly.

For this scenario, we decided to set the state space as x ∈
[−5, 5], y ∈ [0, 30]. Using the Gaussian cost functions on the
state space we modelled the costs like in Fig. 16. There are
costs for approaching every corner of the state space, except
for upper limit of y, specified as one-dimensional gaussians.
The upper limit of y is left without a cost since it is desired
for the vehicle to approach the upper limit of y, it can be seen
as proceeding forward on the road. There are also a Gaussian
distribution that emulates the road block. We also set the cost
for applying control as

R =

[
3 0
0 5

]
.

Which means that it costs 3 to apply control to x and 5 to apply
control to y. The magnitude of the costs is only relevant when
compared to other costs and do not have a unit. Additionally,
we set up the boundaries to have a low desirability(i.e. high
terminal cost) in each dimension, but specified that there was
a region with high desirability at x ∈ [2, 4], y ∈ [25, 27]. This
region corresponds to the desired position to reach, the goal
region. This is not shown in the Fig 16, since it is a separate
parameter choice from the cost. If you apply the toolbox in
[7] that use the SeALS method on this problem, the following
result is acquired.

Fig. 17. Solution development of the single autonomous vehicle scenario.

The solver’s progress is shown in Fig. 17. Most interesting
is the upper-left corner, where the convergence of the solution
is shown. The error rapidly decreases to a low value. In Fig.
18 the value function is shown. The value function is as
mentioned earlier the inverse of the desirability function and
indicates whether states are desirable or not. The car will try
to reach states with low value (blue color). Finally, Fig. 19
shows the state trajectory for a simulation. This simulation is
acquired by finding the optimal control using eq. (11) and the
value function, and then creating a state trajectory based on
the control. In the simulation we see that the car avoids the
roadblock and reaches the desired region (the red block).
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Fig. 18. Value function, inverse of the desirability function, as a function of
x1 and x2. These variables correspond to x and y, respectively.

Fig. 19. A simulation of a car traversing the state space in accordance with
the calculated value. The blue path is the trajectory and the red rectangle is
the desired region.

For this run, the result is successful. The car reaches the
other side of the roadblock without travelling into it, in a
smooth matter. The solution converges to a small error fast,
and the solution looks logical in terms of travelled path when
compared to a real vehicle.

B. Two autonomous vehicles sharing the same lane

As mentioned in II-C, these problems do not scale easily
with the number of states nor the number of grid-points.
Consider a duplication of the scenario in Fig. 15, where two
vehicles start in the exact same position in their respective
state spaces. When imposing the exact same dynamics, costs
and boundary conditions(as such, the vehicles to not take each
other into account at all), we get the result shown in Fig. 20
and 21.

In Fig. 20 we can again see the solution procedure. In Fig.
21 we can see the value functions for the two cars. Important to
note is that the value function is now a 4 dimensional structure,
with both vehicles included. If we want to consider the value
function for just one vehicle, we can fixate the other vehicles’
position and then extract a two-dimensional ”slice”. We have
chosen to only show two of these ”slices”, where the other
car is in the middle of its state space. The value functions
are obviously not smooth and as such the simulations are not
going to generate any satisfactory results. Instead, the problem
has to be reformulated, to avoid the numerical errors that likely
caused these issues above.

Fig. 20. Solution development of two autonomous vehicles starting in the
same position. The solution requires significantly more computation time to
converge at a larger error than with one car.

Fig. 21. Value functions for two autonomous vehicles starting in the same
position seems more stochastic and is not smooth at all.

Fig. 22. Traffic scenario with two autonomous vehicles and one roadblock.

Since the single vehicle problem formulation did not trans-
late well into two vehicles, we will now directly study two at
once. The goal of this project was not only making a single
autonomous vehicle avoid a roadblock, since the interaction
between vehicles also were of interest. Consider the traffic
scenario in Fig. 22, where two autonomous vehicles approach
a roadblock on a unilateral road.

When approaching this traffic scenario, there are several
more aspects to consider. With two cars, one must also
construct a cost that makes them avoid running into each other.
This cost function must have a greater value when the vehicles
are close to each other. This can be addressed using a Gaussian
function,

a · e−(x1−x2)2/2·b2 . (26)

With a and b being arbitrary constants, x1 and x2 being the
x-coordinates for each of the vehicles. There must of course
be such a term for both the x and y coordinate. However, the
toolbox that were used for these test required cost terms to be
on separated form. Namely, it must be possible to accurately
approximate the cost function as a summation of multiplied
one-variable functions [30]. This means that this term is
problematic. Therefore, the expression was first rewritten to

a · e−x
2
1/2·b

2

· e−x
2
2/2·b

2

· e(x1·x2)/b2 . (27)

In this case, only the third factor is an issue. This factor
was therefore rewritten using a series expansion or grade 2,
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yielding the expression

a · e−x
2
1/2·b

2

· e−x
2
2/2·b

2

· (1 +
x1 · x2

b2
+
x2

2 · x2
2

2 · b2
). (28)

From this point a separation into a summation of multiplied
one-variable functions is possible.

Another issue that arised with two vehicles is that whenever
one of the vehicles exit the simulation, the simulation stops.
This means that there can be situations were only one vehicle
is inclined to move forward. The other vehicle needs to apply
control, which costs, to move and it might result in a lower
cost to simply wait. In order to prevent this, smart boundary
conditions were created. In section IV-A, the boundaries were
simply set to have desirability 1 for the side of the state space
where the vehicle were supposed to go. This was not sufficient
in the scenario with two vehicles. If the first vehicle has state
variables x1 and y1 is going upwards in state space while
the second vehicle has x2 and y2 is going downwards, smart
boundary conditions can be created,

1− (1− y1

d
)

1− y2

d
.

For the lower and upper limit of the state space respectively,
with d being the length of the state space in the y direction.
This function makes it so that the desirability of the lower
limit of y2 only approaches 1 once the first car approaches
y1 = 30, and vice versa. This boundary formulation means
that the cars will wait for each other to exit the simulation,
thus preventing situations were only one car apply control.

Fig. 23. Solution development using a larger state space and with vehicle
avoidance functions.

Fig. 24. Value function for two autonomous vehicles starting opposite to
each other. The function are smooth and show only minor disturbances near
the boundaries.

Fig. 25. State trajectories for two autonomous vehicles starting opposite to
each other. One car avoids the other so that they do not collide.

Another numerical issue is the spikes you can see in Fig. 21.
These can have different causes, but one cause can be that the
magnitude difference in costs between two nearby points in
the state space is too high, which can cause that unreasonable
amounts of control is applied. This can be an issue if the
costs within the state space have a very different value than
the boundary conditions. In order to prevent this, the state
space was made bigger, while the Gaussian distributed costs
remained the same, which contributes to a smoother value
function.

Using these new strategies and the dynamics in Fig. 15 for
each car, we made a run without a roadblock and got the result
shown in Fig. 23, 24 and 25. This result is successful since
the cars avoid each other in the simulation and since the value
function is much more smooth.

Fig. 26. Solution development using a larger state space, with vehicle
avoidance functions and a roadblock.

Fig. 27. Value function for two autonomous vehicles and a roadblock. The
function seem smooth for both cars’ state spaces.

The final challenge now is to add a roadblock to the two
car situation. After several tries, the best run of the program
generated was found by placing the roadblock in (x, y) =
(2.5, 15). From this, the results in Fig. 26, 27 and 28 were
generated. It is clear from the upper left part of Fig. 26 that
the solution has converged. One can also note that the solution
is mainly smooth from Fig. 27. As we can see in Fig. 28, the
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autonomous vehicles avoid each other and the roadblock. Due
to the problem formulation, one of the vehicles pass on the
narrow side of the roadblock, which is not intended. This result
does however show that the vehicles can be manipulated to
move as intended and that a smooth solution could be acquired.

Fig. 28. State trajectories for two autonomous vehicles and a roadblock.
One car moves to the side to avoid collision with the second car, and past
the roadblock so that it can drive past it without crashing. Unexpectedly the
car drives to the far-side of the road, squeezing in between of roadblock and
roadside.

V. CONCLUSION

A. Summary and conclusion

In this project we have solved route planning problems for
autonomous vehicles using optimal control. We compared a
couple of different tensor decomposition methods briefly to
find which one suited our needs the best. The major part of
the project was then to formulate the costs and dynamics for
a traffic scenario where two autonomous vehicles encounter a
roadblock.

The results in this project concluded that the algorithms
SeALS with canonical decomposition or DMRG with quan-
tized tensor train decomposition performed equally well for
n = 64. However, we concluded in III that the SeALS
algorithm would be easier to use since we already had access
to an existing solver using this algorithm.

The results also showed that formulating the costs for the
traffic scenario was a complicated task. In order to achieve
a desirable solution one must assert that the cost changes
smoothly over the statespace and that it trivial solutions such as
ending the simulation early are impossible. This could be done
by using a large statespace and Gaussian cost functions, in
conjunction with boundary conditions that required all vehicles
to approach the end of the state space at the same time.

B. Discussion of the results

The evaluation of the solvers within this project gave a first
glance of the difference in performance between the different
variants, but there is much more that could be analyzed. Our
quick test does not investigate how the solvers scale with
dimensions, but rather with number of grid-points. We did
not investigate error convergence or the conditioning of the
operator in our comparison. Due to this, our evaluation was
done as a way to select the solver for our specific needs and the
result may therefore not be generalized to other applications.

Using optimal control for route planning problems like these
have both advantages and disadvantages. One benefit with the

approach is that for a given problem, the solution is known to
be optimal. This means that a given solution is guaranteed to
be the best in terms of minimizing the time or fuel spent, for
all vehicles in the calculation. Since the calculation is done
for all vehicles, in can be done by a remote device, which can
potentially have a better computation power than the vehicles
by themselves. The calculation also only needs to be done
once, and can thereafter be used by all vehicles to obtain
optimal controls. Calculating the value function is the time
consuming part of the program, so once it is done one can
simulate multiple situations with low computation times.

The problems with the approach is that the best problem
formulation is difficult to find. One must carefully avoid
numerical errors, which could have devastating effects on any
real implementation. This means that long development times
are needed to produce correct formulations, which is sub-
optimal.

Another downside is that while the tensor decomposition
makes the solvers more manageable, there is still significant
computation time for relatively small problems. In this project
we studied relatively low-dimensional cases, but in a real
application it is of interest with many more autonomous
vehicles in the calculation.

C. Future work

There are several interesting aspects of the project that
could be expand on. As mentioned earlier, the different solvers
were not analyzed thoroughly and this could be a topic for
future work. Another interesting aspect would be to create
an algorithm that can expand to multiple autonomous vehicles
more easily, that can add costs automatically. This would make
the real world implementation more feasible. One could also
study another type of autonomous vehicle, such as drones.
This would add another dimension to the positioning and could
generate interesting results.
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